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Abstract. An approximate computational scheme is proposed for treating complex systems.
The proposed method relies on the quadratic approximation to the multiple-scattering theory of
Korringa, Kohn and Rostoker, which allows one to implement potential shifts in the solution of
the Schr̈odinger equation for impurities. Choosing these shifts appropriately, one can simulate
various physical processes in complex systems in an efficient computational way. The efficiency
of our method is demonstrated by two example calculations. In the first, we calculate the charge
transfer towards (or outwards from) a 3d or a 4d single substitutional impurity in a Cu or Ni
host metal. In the second example, we calculate the binding energies of the 2s electrons of 3d
atoms in solids in a quasi-adiabatic approximation.

1. Introduction

The recent development of the order-N , O(N), algorithms and the availability of increased
computer capacities nowadays have allowed electronic structure calculations to employ unit
supercells containing very large numbers of atoms [1, 2]. These advantages have offered
new possibilities in the study of impurity systems and alloys, and results obtained from
their utilization can be used for testing simpler computational approaches and various model
approximations, which may be applicable to more complex problems [3]. Appearing to be
of special interest is the case of physical processes in complex systems which exhibit a
high degree of localization and therefore can be simulated by single-electron potential shifts
localized in one or more regions of the system.

One example case stems from the study of the effect of the point-charge electrostatics
on the properties of alloys. For this problem, Faulkner and collaborators [1–3], using results
obtained with theO(N) algorithms, have demonstrated the range of applicability and the
limitations of simpler models [4–8] proposed within the coherent potential approximation
(CPA). In particular, first-principles calculations have justified the method of Johnson and
Pinski [5], which is based on the picture in which the net chargeQi at theith site of an alloy
is almost completely screened by charge transferred to or from the atoms on the nearest-
neighbour shell and hence the contributions to the Coulomb potential come primarily from
the first shell. This conclusion is not correct for every individual site in the alloy, but it has
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been shown to be true when the contributions to the potential are averaged over all sites
occupied by the same species of atom [3]. As a result, the effect of the screening charge
(related to the site chargeQi) can be simulated by a shell of charge−Qi at the distance of
the nearest-neighbour shell. This in turn modifies the potential of the atom at theith site
by a potential shiftδVi given by

δVi = −Qi

R1
(1)

whereR1 is the distance from a first-nearest neighbour to theith site. From a practical point
of view, equation (1) can be viewed in the opposite way. In particular, one could assume
that equation (1) is correct for a system which exhibits charge-transfer effects and therefore
that the electronic states of such a system could be accurately calculated by incorporating the
point-charge electrostatics, i.e. the induced potential shiftsδVi given by equation (1), within
the Schr̈odinger equation in an appropriate way. It is apparent, however, that such a solution
to the problem has to be obtained in a self-consistent way because the charge transfersQi ,
and the corresponding potential shiftsδVi , which have to be the expected output of the
solution, are taken as input parameters of the system in the proposed consideration.

In an approach similar to that described above, using a potential shift in the single-
electron Schr̈odinger equation for an atom in a metal, one can simulate the final state of a
crystal atom which undergoes an inner-electron excitation, the latter leaving the crystal atom
with an inner-electron hole. It is recalled that a crystal atom with an inner-electron hole
is often approximated as theZ + 1 impurity in a metal characterized by atoms of atomic
number Z [9, 10]. Therefore, the approximate calculational scheme that is proposed for the
single-impurity system, as described above, could have been equally well applied in the
studies of the electronic binding energies (BEs) of bulk atoms too. However, our method
allows a different approximation as well. In particular, a potential shiftδVi is used to
simulate the final-state effects of the excited atom (i.e. the one with the inner-electron hole)
by imposing the condition of local charge neutrality. In our present application the charge
neutrality is restricted to being over the unit cell which contains the excited atom; however,
as will be shown below, by imposing self-consistency in obtaining the potential shiftδVi ,
most of the final-state effects can be accounted for in the estimation of the inner-electron
BEs.

Another interesting application of the present method is the incorporation of correlation
effects beyond the local electron density approximation (LDA) and within the single-electron
Schr̈odinger equation. This can be achieved by simulating these correlations by a potential
shift (of the type of a Hubbard-U term) obtainable according to the Hubbard model [11].

A common characteristic of all of these applications is that they can be simulated by
potential shifts which are applied locally and satisfy different boundary conditions, the latter
implied by the system and the physical process that are considered. In the present work,
after a brief presentation of our method, we will demonstrate its applicability by means of
two example applications, namely, the calculation of the charge transfer associated with a
3d/4d substitutional impurity in a 3d-metal host and the calculation of the 2s BE (given
relative to the free-atom state) of 3d atoms in their bulk state.

2. The method

Without loss of generality and for reasons of clarity, we present the formalism of our method
in relation to the impurity problem. This is because, as was stated earlier, in going from
application to application, only the boundary conditions applied to the simulation potential
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shifts change, while the formulation of the problem is not affected.
The present application of the proposed new approach, as applied in the case of single-

substitutional impurity systems, is implemented as follows. An impurity potentialvi(r) is
created and placed in the impurity cell at the lattice siteRi while the host potentialsv(r)
are located in all of the other cells in the crystal. A series of calculations are carried out
with shifted impurity potentialsvshift

i (r, ζ ), of the form

vshift
i (r, ζ ) = vi(r)+ ζσi(r) (2)

whereσi(r) is a step function that is one whenr is in the ith cell and zero otherwise and
ζ is a constant. A net charge within the impurity cell,Q(ζ), will be obtained for each
value ofζ . When the shift calculated from equation (1) with a chargeQi = Q(ζ) is equal
to the shift ζ that was used to calculate that charge, self-consistency has been achieved.
Similar methods have been proposed before, either in studies of alloys [5–7, 12], or in other
applications, such as in the work of Lambrechtet al [13], where this type of approach has
been proposed as an efficient calculational method for determining energy band offsets for
semiconductors.

In principle, the application of the present proposal could be difficult, because shifting a
potential byζσi(r) in a unit cell of a crystal is not a simple thing to do. Normally, it would
be necessary to make additional approximations in order to implement it, such as replacing
the polygonal impurity cell by a sphere. In the present work, such approximations are
avoided by making use of the advantages offered by the quadratic approach to the Korringa–
Kohn–Rostoker (KKR) method, abbreviated as the QKKR method [14, 15]. The QKKR
method uses scattering matrices that are not diagonal in the angular momentum indices in
order to treat scattering from non-spherical potentials. In the band theory application of the
method, the equations of Korringa [16], Kohn and Rostoker [17] are rewritten in such a
way that the structure constants are independent of energy, by adding an energy-dependent
shift, 1:

1 = E − E0 (3)

multiplied by the step function, i.e.,(E−E0)σ (r), to the potential function for each cell in
the crystal. The addition of an another shift to the impurity potential, as in equation (2), is
therefore extremely simple. In more detail, within the QKKR method, the potentialsvi(r)
and v(r) take, respectively, the formsv1i (r) and v1j (r), j 6= i, given by the following
equations:

v1i (r) = vi(r)+1σi(r) (4)

v1j (r) = v(r)+1σj(r) j 6= i. (5)

Similarly, the shifted potentialvshift
i (r) takes the form

v
1,shift
i (r; ζ ) = vi(r)+ (1+ ζ )σi(r). (6)

For the crystal potentialV 1(r) constructed from the cell potentialsv1,shift
i (r; ζ ) and

v1j (r), j 6= i, given by equations (6) and (5), the Green’s functionG1
A(E, ζ ; r, r′) takes

the form [18, 19]

G1
A(E, ζ ; r, r′) =

∑
L,L′

Z1AL (r, ζ )τ100
ALL′(ζ )Z

1A
L′ (r

′, ζ )−
∑
L

Z1AL (r, ζ )J1AL (r′, ζ ) (7)

where L and L′ are angular momentum indices. The wave functionsZ1AL (r, ζ ) and
J1AL (r, ζ ) are regular and irregular solutions of the Schrödinger equation in the field of
the potentialv1,shift

i (r; ζ ) for the energyE0, and the matrixτ100
A (ζ ) is given by

τ100
A (ζ ) = [1+ τ100(m1A(ζ )−m1)

](−1)
τ100. (8)
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The matricesm1A(ζ ) andm1 are the inverses of thet-matrices that describe the scattering
from the shifted potentials given by equations (6) and (5) respectively; they can be obtained
using methods that have been explained elsewhere [14, 15]. The matrixτ100 is given by a
k-integration over the Brillouin zone:

τ100 = �

8π3

∫ [
m1 − B(E0,k)

](−1)
dk (9)

where� is the volume of the crystal and the elements of the matrixB(E0,k) are the well
known structure constants of KKR band theory [16, 17] calculated for the one energyE0.

The net charge on the impurity siteQ(ζ) is obtained by integrating over the impurity
cell and energy:

Q(ζ) = − 1

π
Im
∫ EF

B0

dE
∫

impurity cell
G1
A(E, ζ ; r, r) dr − Zi. (10)

The Fermi energy,EF , of the host metal is used in equation (10),Zi is the charge on the
impurity nucleus andB0 is the bottom of the conduction band.

The calculation of the chargeQ(ζ) according to equation (10) and within the calc-
ulational scheme described above can be obtained at different levels of approximation. In
particular, one can obtainQ(ζ) in one of the following ways.

(i) Q(ζ) is obtained as the output of a single iteration, i.e. without allowing for any
charge relaxation within the impurity and host cells.

(ii) Q(ζ) is obtained at the end of a self-consistent solution for which it is assumed that
the charges are frozen in every cell except in the one that contains the impurity. In this
case, the self-consistent approach allows for a redistribution (relaxation) of the charge in
the impurity cell, not allowed in process (i).

(iii) Q(ζ) is obtained within the self-consistent scheme described in (ii) allowing also for
charge relaxation in the host cells surrounding the impurity cell. This approximation, how-
ever, will not be discussed here as it falls outside the scope of the present work, which aims
to propose an efficient approximate calculational scheme applicable to complex systems.

The values of the charges in the impurity cell obtained according to the approximations
(i), (ii) and (iii) will be denoted byQ(x)(ζ ), where(x) = (i), (ii), (iii). M 1/M2 will be used
to denote the system with a substitutional impurity M1 in the host lattice M2.

3. Tests and discussion

The applicability of our method is firstly tested in the case of metallic systems with a
single substitutional metal impurity for which accurate theoretical results are available for
comparison. In particular, reported results obtained by the well developed computational
methods for the single-impurity systems [20–24] are used for a quantitative test of the
present method. As a second application we will demonstrate the use of the proposed
theory in calculating shifts in the BEs of the inner electrons of atoms caused by changes in
their local environment.

3.1. Charge transfer

Calculational tests were carried out for the single-impurity systems Ti/Cu, V/Cu, Co/Cu,
Ni/Cu, Zn/Cu, Nb/Cu and Cu/Ni. In each of the first six systems the scattering parameters for
the impurity atom (Ti, V, Co, Ni, Zn, Nb) were obtained from a self-consistent calculation
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Figure 1. Results for the system Ti/Cu. The calculated charge transfer from (shown as positive)
or towards (shown as negative) the impurity site obtained according to equation (10) of the text
(dashed line) as a function of the potential shift applied to the impurity potential; the labels
(1 iter.) and (s.c.) indicate, respectively, results obtained within the levels of approximation (i)
and (ii) discussed in the text. The variation given by equation (1) is indicated by the solid
line. In the inset the electron DOS as obtained according to level (i) (solid curve) and level (ii)
(dashed curve) approximation are shown.

for pure Ti, pure V, pure Co, pure Ni, pure Zn or pure Nb respectively, each one of the
impurities assumed to be on a fcc lattice with the pure Cu lattice constant. For the system
Cu/Ni, the scattering parameters for the impurity atom (Cu) were obtained from a self-
consistent calculation for pure Cu in a fcc structure with the lattice constant that of Ni. The
intersection between the calculated variation ofQ(x)(ζ ), (x) = (i), (ii), versusζ (for each
impurity system) with the one describing the chargeQi versus the shiftδVi according to
equation (1) estimates the charge flow from or towards the impurity cell at the different
levels of approximation. Preliminary results for the valuesQ(i)(ζ ) for selected impurities in
Cu and Ni host lattices were reported in reference [25]. In the present work, we extend our
method to calculations at the level of approximation (ii) described above. Our results for
Q(i)(ζ ) andQ(ii)(ζ ) are presented in table 1 along with other reported data for comparison.
A graphical illustration of our solution is presented in figure 1 for Ti/Cu.

It should be emphasized that charge transfer is an ill-defined quantity and much care
has to be taken as regards its usage (see for example reference [28]). In particular, the
charge transfer depends on the way in which the crystal space is divided (and the definition
of the impurity cell). Also, the charge transfer is very sensitive to the lattice (geometric)
and charge relaxation in and around the impurity cell. Furthermore, small changes in the
calculated impurity charges may be caused by the different lattice constants used in the
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Table 1. The calculated total charge within the impurity cell for various single-impurity systems.

Total charge within the impurity cell

Present work

Lattice One iteration, Self-consistent,
Impurity system constant (au) Q(i)ζ ) Q(ii)(ζ ) Other work

Ti/Cu 6.76 3.07 3.221
3.21a,b

6.73 3.34c

V/Cu 6.76 4.32 4.386
4.33a,b

6.73 4.49c

Co/Cu 6.76 9.10 8.990
8.89a,b

6.73 8.97c

Ni/Cu 6.76 10.115d 10.065
9.98a,b

6.73 10.045c

6.69 10.035c

Zn/Cu 6.76 11.818 11.797
11.805e,b

11.876f,b

11.801g,b

6.90 11.795h,b

Nb/Cu 6.76 3.68 3.833
3.79a,b

Cu/Ni 6.55 10.998 11.013
11.02i,b

6.69 11.007c

6.58 11.004c

11.026j,b

a Reference [21].
b The value of the lattice constant is not reported.
c Reference [26]; the result obtained by the LMTO-CPA method; it refers to the charge within
the atomic sphere of the impurity.
d This value corrects an incorrect value in a prior publication [12].
e The result quoted in reference [5]; it refers to a calculation that includes the first shell of
neighbours.
f The result obtained by R Zeller and co-workers quoted in reference [5]; it refers to a calculation
in which all charges remain fixed except those of the impurity atom.
g The result obtained by the cc-CPA method [5].
h References [1, 2].
i Reference [23].
j Reference [27]; it refers to the charge within the impurity Wigner–Seitz sphere while allowing
for charge relaxation in the neighbouring four shells of host atoms.

various calculations. This is apparent from the reported results quoted in table 1.
While charge relaxation has been dealt with successfully by more elaborate calculational
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methods [20–24], the geometric relaxation has not been resolved completely yet. The
reported results for the charge transfer do not include geometric relaxation, while some of
them are available with and without charge relaxation in the surrounding impurity cells.
Thus, a meaningful evaluation of the results of the present method is possible by comparing
them with the corresponding results included in table 1. From such a comparison, it becomes
apparent that our approach gives results in very good agreement both with those obtained by
the established techniques for the single-impurity problem [20–24] and with those obtained
in the context of the alloy calculations [1, 2, 5–7, 26]. The agreement found between
our results and those obtained by other methods is very good, especially when our results
refer to those obtained within the level of approximation (ii) described above [29]. The
case of Ni/Cu exhibits an interesting decline from the results obtained by means of more
accurate calculations [21] while it is in excellent agreement with the results obtained within
the context of the alloy calculations [26] when the latter are projected to the same lattice
constant.

The difference found between theQ(i)(ζ ) andQ(ii)(ζ ) values is mainly attributable to
changes of the electron DOS at the Fermi level as a result of the charge relaxation within
the impurity cell. This is clearly shown in the inset of figure 1 where the electron DOS is
shown at the end of the first iteration (level (i)) and at self-consistency (level (ii)). From
this comparison it becomes apparent that the relaxation process (self-consistency) increases
the electron DOS at the Fermi level and this is reflected as a lowering of the shift required
for screening the impurity charge.

In concluding the presentation of this application, it is worth noticing that the success of
our method in evaluating the charge transfer associated with a single substitutional impurity
demonstrates that the idea of local screening dictated by equation (1) is, in general, as
applicable in the case of single-impurity systems as it is for alloys.

3.2. Binding energy shifts of inner electrons

In a manner similar to that described above, we can use the proposed calculational scheme
to calculate the BEs of the inner (core) electrons of atoms in metals. In this case, it is
assumed that an excitation process excites one inner electron of a crystal atom and raises
the electron to an energy equal to that of the Fermi energy of the metal. It is therefore
apparent that such an excited atom takes the role taken by the impurity atom in our previous
application [30].

In order to simplify the computational work in this example case, it is further assumed
that during the excitation process the local charge neutrality is not disturbed. In particular,
it is assumed that no charge flows out of or into the unit cell which contains the excited
atom. As our calculation allows a self-consistent redistribution (relaxation) of the valence
electron charge within the unit cell which contains the excited atom, it is expected that
most of the final-state effects will be included in our calculation, leaving out just the effect
of charge relaxation in the unit cells surrounding the excited atom. In a more accurate
calculation, the restriction of the local charge neutrality, which is imposed here only within
the excited unit cell, can be lifted by extending it over a region which includes the excited
atom and its surrounding unit cells. These two considerations will yield different results,
but, as will be shown below, final-state effects related to the charge relaxation in the cells
surrounding the excited atom constitute only a small percentage of the overall bulk effect
on the inner-electron BEs.

The assumed charge neutrality in the excited unit cell of the crystal is simulated by
a potential shiftδVi determined self-consistently in a similar way to the one used for
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calculating the charge transfer in the impurity problem. Here, however, the boundary
condition dictated by equation (1) is replaced by a new one, namely by the requirement
that the potential shiftδVi be such as to preserveNval + 1 valence electrons in the excited
unit cell, whereNval is the number of valence electrons in the non-excited crystal atom
(assuming one atom per unit cell). After obtaining self-consistency inδVi (and in the sense
of the level of approximation (ii) described above), the total energy of the system containing
one excited atom is calculated using Janak’s [31] formalism appropriately generalized for
the present case [32]. Then, subtracting the total energy of the non-excited system we obtain
the BE of the excited electron with respect to the Fermi energy of the metal [33, 9].

As is well known, LDA fails to predict the correct electronic configuration of the ground
state of most of the free transition metal atoms [34]. Due to this drawback and the limitations
which are inherent to the LDA as regards calculating the excitation energies, the calculated
electronic BEs, as obtained within the LDA, have little practical importance. However, due
to expected error cancellations, LDA can, in many cases, be used to calculate changes in the
electronic BEs of an atom with reasonable accuracy. These changes (called binding energy
shifts (BESs)) are caused by changes in the local environment of the atom. A characteristic
example, which is of much importance in surface physics, is the successful LDA-based
calculation of the electronic BESs that bulk atoms undergo as they move from the bulk to
the surface of a metal [35, 10].

Table 2. Calculated electronic BESs associated with the 2s electrons of bulk Ti, V, Co, Ni
and Cu atoms as found relative to their BEs for the free-atom state. Our results are based on
free-atom excitations employing the experimentally observed ground states which are assumed
unchanged upon excitation; the results in parentheses have been obtained using free-atom
excitations between the (calculated) optimum ground and excited states.

Binding energy shift (eV)

Atom Experiment [9] Theory [33] Present work

Ti 12.3 13.3 14.46 (9.30)
V 13.3 13.3 14.46 (8.90)
Co 14.0 17.0 15.62 (8.36)
Ni 15.2 17.2 14.75 (7.26)
Cu 7.3 8.7 6.44 (6.44)

In the present application, we are restricted to a much more approximate model
calculation of the BESs of the inner electrons of an atom which occur as the atom passes
from its free-atom state to the corresponding bulk one. In particular, we calculate the
electronic BESs associated with the 2s electrons of bulk Ti, V, Co, Ni and Cu atoms; the
BESs are given with respect to the electronic BEs of the corresponding free-atom state. For
such inner-electron BESs, there exist some reported data [9, 33] which may be used for the
necessary comparisons. These data are included in table 2 along with our results.

The experimental data listed in our table 2 have been taken from reference [9] while
the theoretical ones have been obtained from the tabulation of Shirleyet al [33]. The
latter refer, on the one hand, to the free-atom relativistic Hartree–Fock–Slater type of
calculation [36, 37] and include relaxation contributions to the BEs, but do not account
for any differences in correlation energy between the two states involved in the excitation
process; on the other hand, they refer to semi-empirical bulk-state calculations in which the
effect of the solid-state environment is approximated by a Coulomb integral between the
core level under consideration (in the present case this is the 2s core level) and a screening
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orbital. Semi-empirical theoretical results for the electronic 2s BESs of bulk atoms, given
relative to the free-atom state, have also been reported by Johansson and Martensson [9]
who employed a Born–Haber cycle in order to describe the excitation process; their results
are closer to the experimental data (listed in our table 2) than the results of Shirley and
collaborators [33].

In obtaining our results, the BEs of the 2s state of the bulk atoms are obtained according
to the procedure discussed above. In particular, we calculate the total energy of a metal
system with one substitutional impurity, the latter being a crystal atom with a 2s-electron
hole appropriately neutralized by an additional valence charge spread over the unit cell
containing the excited atom. The 2s-electron BE of the bulk atom is, then, obtained by
subtracting the total energy of the non-excited system from that of the excited one.

Our calculations of the BEs of the free atoms were performed using a standard
LDA-based computer code compatible with our computer codes used for the bulk state
calculations. In particular, our programs refer to non-magnetic cases and employ the Hedin–
Lundqvist [38] expression for the exchange and correlation energy per atom [39]. However,
our free-atom results suffer, as usual, from one inherent drawback, namely they do not
always describe the experimentally found electronic configurations of the ground state of
the free atoms. It is recalled that the experimentally observed ground state of Ti, V, Co
and Ni is of the type 3dn4s2, wheren = 2, 3, 7, 8 respectively, and for the Cu atom it
is of the form 3d104s1. In contrast, the LDA-based theoretically found [34] ground-state
configurations are of the form 3dn+14s1, wheren = 2, 3, 7, 8, 9 for Ti, V, Co, Ni and
Cu respectively [41]. In other words, only for the free Cu atom is there unambiguous
agreement between the results of the LDA theory and the experiment in the description
of the electronic ground-state configuration. For this reason, in calculating the BEs of the
free atoms in the present application, we have used the experimentally observed electronic
configurations of the ground states of the free atoms and, additionally, we have assumed
that these configurations do not change in the excited states. This assumption is not always
correct, as a change in the valence electronic configuration of a free atom may occur upon
excitation [41]. Nevertheless, and for reasons of completeness, we have also included in
table 2 our results corresponding to free-atom transitions from the (calculated) optimum
ground state to the (calculated) optimum excited state. As it is apparent from table 2,
our results, which are based on the experimental ground state of the free atoms, are in
very good agreement with the existing theoretical and experimental data [42]. In the case
of Cu, for which the LDA predicts the experimentally observed ground and excited state
for the free atom, the agreement is very satisfactory. However, our results based on the
theoretically found ground and excited states of the free Ti, V, Co and Ni atoms exhibit
pronounced differences when compared with other theoretical and experimental results [42].
The difference between these two sets of results indicates the source of our calculational
error, which is the limitation of the free-atom calculations. At the same time, the results of
table 2 make clear the underlying difficulties associated with the theoretical determination
of the BESs of bulk atoms given with respect to the free-atom state. In addition to this,
from our results one can explain why LDA is expected to be more successful in calculations
involving differences in the BESs associated with various local environments of the bulk
atoms (i.e. surface relative to bulk electronic BESs [35]). Our method is expected to be
suitable for calculating surface BESs with respect to the BEs of the bulk state. On the
other hand, it becomes clear that the accurate calculation of the BESs given with respect
to the free-atom state requires more sophisticated calculational approaches which can, in a
compatible way, match bulk and atomic computational techniques which go beyond the LDA
approximation and its present improvements (e.g. the generalized gradient approximation).
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It is understood that the calculation of the electronic BESs of core electrons is a very
difficult computational task. Nowadays, improvements in the LDA theory promise improved
accuracies in the calculation of the electronic BEs. Nevertheless, due to mutual cancellations
of the errors that occur in the calculation of the electronic BEs, the LDA-based calculation
of the BESs seems to lead to results in fair agreement with available experimental data,
provided that the correct ground and excited atomic state are used. The present application
demonstrates this fact as well. In addition to that, our results for Cu, for which the free-
atom calculations are in agreement with experiment, also imply, as in the case of the
charge-transfer calculations, that the contribution to the electronic BESs which comes from
charge relaxation in the unit cells surrounding the excited atom is only a small percentage
of the overall solid-state effect. This, in fact, supports the local character of the screening
of the core hole which earlier theories [9, 33] attributed to the d electrons. In turn, this
observation gives extra support to the underlying assumption of locality which is inherent
in the approximate calculational method that is proposed here.

4. Conclusion

In conclusion, we have shown that localized perturbations (processes) in complex systems
can be suitably simulated by local potential shifts superimposed on the single-electron
potentials of the unperturbed systems. The utilization of this idea allows one to propose
approximate calculational approaches and perform calculations for complex systems in an
efficient computational way which can also help one to understand the underlying physics
of the problems concerned. We have demonstrated this possibility by applying our ideas to
two computationally demanding problems:

(i) the calculation of the charge transfer associated with a substitutional impurity in a
metallic host; and

(ii) the calculation of inner-electron BESs associated with bulk atoms and given relative
to the free-atom state.

In both cases, our proposed approximate calculational method gave results in good agree-
ment with existing experimental and theoretical data.

The proposed new method does not aim to replace existing elaborateab initio methods—
especially in the case of single-impurity systems, for which there is no doubt that the proper
way to treat them is to consider the impurity and several nearest-neighbour shells as an
impurity cluster to be embedded in the host lattice (as for example is done in references
[20–24] or in our level of approximation (iii)). This is, of course, a formidable calculation,
and the computer time required to perform it increases as the cube of the number of atoms
in the cluster. There are times when great precision may not be required for a given
application, and it is interesting to note that there seems to be a much easier calculation that
will give surprisingly good predictions as was demonstrated in the applications presented.
The success of the present calculations allows us to consider the proposed method as a
promising calculational scheme for studying complex systems.
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